Application of Software Testing using Genetic Algorithm

نویسندگان

  • Mohit Saifi
  • Shahid Sagar
چکیده

Different types of software testing techniques and methods have been projected for taking care of these issues. Use of evolutionary algorithms for usual test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such type of evolutionary algorithms. In this research paper, we current a study of Genetic Algorithm approach for addressing the different issues encountered during software testing. This paper presents a method for optimizing software testing effectiveness by identifying the mainly critical path clusters in a program. We are increasing a more selective approach to testing by focusing on those parts that are largely critical so that these paths can be tested initial. By identifying the large amount critical paths, the testing effectiveness can be improved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing

Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...

متن کامل

Distributed Black-Box Software Testing Using Negative Selection

In the software development process, testing is one of the most human intensive steps. Many researchers try to automate test case generation to reduce the manual labor of this step. Negative selection is a famous algorithm in the field of Artificial Immune System (AIS) and many different applications has been developed using its idea. In this paper we have designed a new algorithm based on nega...

متن کامل

Application of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine

In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...

متن کامل

LAGA: A Software for Landscape Allocation using Genetic Algorithm

In this paper, Landscape Allocation using Genetic Algorithm (LAGA), a spatial multi-objective land use optimization software is introduced. The software helps in searching for optimal land use when multiple objectives such as suitability, area, cohesion and edge density indices are simultaneously involved. LAGA is a flexible and easy to use genetic algorithm-based software for optimizing the sp...

متن کامل

Application of Genetic Algorithm and Particle Swarm Optimization in Software Testing

This paper will describe a method for optimizing software testing by finding the most error prone paths in the program. This can be achieved by a meta-heuristic technique, that is by using genetic algorithm and particle swarm optimization. As exhaustive software testing is not possible where software is tested with all the possible inputs , those parts of software are also tested which are not ...

متن کامل

Optimization of Cement Spacer Rheology Model Using Genetic Algorithm (RESEARCH NOTE)

The primary cement job is a critical step in successful well completion. To achieve effective cementing job, complete mud removal from the annular is recommended. Spacer and flushers are used widely to achieve this goal. This study is about weighted cement spacer systems containing a surfactant package, weighting agent and rheological modifiers. Weighted spacer systems are utilized when a high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015